
Supplementary Material for
R2P2: A ReparameteRized Pushforward Policy
for Diverse, Precise Generative Path Forecasting

Nicholas Rhinehart1,2, Kris M. Kitani1, Paul Vernaza2

1 Carnegie Mellon University, Pittsburgh PA 15213, USA
2 N.E.C Labs America, Cupertino, CA 95014, USA

1 Video Description

Fig. 1: Example video frame. Top row: Overhead views depict generated and true
trajectories on each scalar map. Top left: The input LIDAR map is shown. Top
middle: The prior’s “cost map” is shown. Top right: The approximate prior and
the input LIDAR map are alpha blended. Bottom: Our generated trajectories
(red) and the true predicted trajectory (blue) are shown after projection to the
image frame.

Please view the video included with the supplementary material. The video
was generated by running our method on held-out test data from our newly
collected CaliForecasting dataset. In Figure 1, we show an example frame
from the video. The top row depicts various overhead views, along with our

2 Nicholas Rhinehart, Kris M. Kitani, Paul Vernaza

method’s generated trajectories, and the bottom row depicts the natural image
input. Our method’s generated trajectories and the true future trajectory are
shown in each view.

2 Properties of the cross-entropy metric

2.1 Lower-bounding the perturbed cross-entropy

The naive cross-entropy metric −Ex∼p log q(x) is unbounded below when the
entropy of p is unbounded below. This happens in practice, for example, when
the data deterministically satisfies some linear or nonlinear constraint. To avoid
this problem, we employ a perturbed version of the cross-entropy metric for both
training and evaluation. Specifically, we use the metric

−Eη∼µEx∼p log q(x− η). (1)

In practice, we choose the perturbation distribution µ to be Gaussian with zero
mean and covariance εI for simplicity.

We now show that the value of the perturbed cross-entropy is lower-bounded
by the entropy of the perturbation distribution, which eliminates singularity of
the metric, as long as the perturbation distribution has finite entropy. We first
note that Eq. (1) can be written as H(p̃, q), where p̃ is the convolution of p
with µ: p̃(x) ,

∫
p(y)µ(x − y) dy = Ey∼pµ(x − y). Gibbs’ inequality implies

H(p̃, q) ≥ H(p̃), so it is sufficient to show that H(p̃) ≥ H(µ). Observe that

H(p̃) = −
∫

Ey∼pµ(x− y) logEy∼pµ(x− y) dx (2)

≥ −Ey∼p
∫
µ(x− y) logµ(x− y) dx (3)

= −Ey∼p
∫
µ(z) logµ(z) dz (4)

= H(µ), (5)

where the inequality results from applying Jensen’s inequality to the entropy
function (which is concave), and we subsequently applied the change of variables
z = x− y. Note that we have applied Jensen’s inequality in the following way:

Ey∼pH(µ(· − y)) ≤ H(Ey∼pµ(· − y)), (6)

where µ(· − y) denotes the distribution µ̃(x|y) := µ(x− y).

2.2 Cross-entropy is not coordinate-invariant

Some care must be taken when reporting cross-entropy values because cross-
entropy is not coordinate-invariant; this implies that the same model will achieve
different cross-entropy values depending on what units the data are expressed

R2P2 for Diverse, Precise Generative Path Forecasting 3

in, for example. Fortunately, it is fairly simple to compute how the cross-entropy
changes under coordinate transformations. Suppose p : X → R+ and q : X →
R+ are distributions on X, and f : X → Z is a differentiable, invertible coor-
dinate transformation from X to Z. We wish to compute H(f∗p, f∗q) in terms
of H(p, q), where f∗µ represents the pushforward measure of µ under the map
f . Using the notation dfx to represent the Jacobian of f evaluated at point x,
direct computation shows:

H(f∗p, f∗q) = −
∫
p(f−1(z))|det dff−1(z)|−1 log

(
q(f−1(z))|det dff−1(z)|−1

)
dz

(7)

= −
∫
p(x) log(q(x))|det dfx|−1 dx (8)

= H(p, q) + Ex∼p log |det dfx|, (9)

where the second line follows from using f to change variables in the integral
from z to x. For example, if z = f(x) = cx, and x ∈ Rd, then Ex∼p log |det dfx| =
d log |c|. Therefore, we could make H(f∗p, f∗q) arbitrarily negative by setting c
to a very small positive number.

3 Explanation of Fig. 2

Fig. 2 in the main paper illustrates how the different cross-entropy metrics
H(p, qπ) and H(qπ, p) are sensitive to different modeling errors in qπ. Here we
briefly discuss how to obtain the figures shown in the annotations of that figure.

Consider, for instance, the middle-bottom figure: H(qπ, p) ≈ 1
2 (M ′0 − log ε).

We can derive this by analyzing the relative supports of the good and bad versions
of qπ. Suppose qπ is the good reference model and q′π is the bad model illustrated
in the middle figure. We assume q′π is a mixture of qπ and a “rotated” version of
qRπ that rotates the support of qπ into the pictured obstacles, such that q′π(x) =
0.5qπ(x) + 0.5qRπ (x). Let A = support(qπ) and B = support(qRπ). Assume A and
B are approximately disjoint. We then have

H(q′π, p) = −
∫
q′π(x) log p(x)dx (10)

= −
∫
A∪B

(
1

2
qπ(x) +

1

2
qRπ (x)) log p(x) (11)

≈ −1

2

∫
A

qπ(x) log p(x) +−1

2

∫
B

qRπ (x) log p(x) (12)

Assuming log p(x) ≈ ε, ∀x ∈ B, we then have H(q′π, p) ≈ 1
2 (M ′0 − log ε). The

other figures can be derived via similar analyses.

4 Nicholas Rhinehart, Kris M. Kitani, Paul Vernaza

4 Architectural details

4.1 Form of policy

Our path distribution can be thought of being parameterized by a continuous
action-space policy, in the following way. Recall the following relationships from
the main text:

xt = µπt (ψt; θ) + σπt (ψt; θ)zt (13)

qπ(xt|ψt) = N (xt;µ = µπt (ψt), Σ = σπt (ψt)σ
π
t (ψt)

>), zt ∼ N (0, I). (14)

The output of our stochastic policy is a distribution over continuous actions:
π(at−1|ψt−1; θ). The state-state transition dynamics in general continuous-action
RL problems can be written as:

p(xt|ψt−1) =

∫
p(xt|ψt−1, at−1)π(at−1|ψt−1; θ)dat−1

By taking p(xt|ψt−1, at−1) = δ(xt− at−1), i.e., assuming the policy can fully
control the state dynamics, in that it chooses an action, and the next state
is the Dirac delta function about that chosen action, we receive p(xt|ψt−1) =
π(xt|ψt−1). This means that qπ(xt|ψt) = π(xt|ψt−1; θ). Therefore, we can think
of the policy as the one-step marginal qπ(xt|ψt) = N(xt;µ

π
t (ψt), σ

π
t (ψt)σ

π
t (ψt)

>).

4.2 Linear

The R2P2 Linear architecture consists of two learned affine mappings Ax + b0
and Bx + b1, A ∈ R2×2H , B ∈ R4×2H , bi ∈ R2H . Here, H is taken to be
the maximum past size of 20. As discussed in the paper, we use the matrix
exponential to form σπt . To enhance numerical stability, we “soft-clipped” the
input S of expm(S + S>) in the following elementwise transformation, which
prevents σπt from shrinking arbitrarily small. softclip(S,L) = S

softmax(1,‖S‖F /L) .

We used L = 5.

4.3 Field

The R2P2 Field CNN architecture parameters are shown in Tab. 1. The input
H and W dimensions are downsampled to 64 × 64, and the output dimensions
are upsampled back to 100× 100. In addition to the LIDAR and semantic seg-
mentation channels used in the input, we added an H ×W × 1 channel of grid
(pixel) coordinates, an H ×W × 1 channel of pixel distances to the car origin in
pixel coordinates, (H/2, 0). Finally, a signed distance transform feature is added
to the input, which takes the road channel from the segmentation as input, and
outputs the signed distance to the road at each pixel. The final input array is of
shape H ×W × (1 +Cs + 3), with H = W = 50, 1 layer for the LIDAR map, Cs
channels for the semantic segmentation, and Cs = 18 in the CaliForecasting
model, Cs = 12 for the Kitti model.

R2P2 for Diverse, Precise Generative Path Forecasting 5

Table 1: R2P2 Field Architecture. The input H and W dimensions are down-
sampled to 64×64, and the output dimensions are upsampled back to 100×100.
s+ stands for the softplus layer: s+(x) = log(1 + expx).

Layer 1 2 3 4 5 6 7 8 9 10 11 12 13

Kernel Size 3 3 3 3 3 3 3 3 3 3 3 3 1
Dilation 1 1 1 1 2 4 8 4 2 1 1 1 1
Channels 32 32 32 32 32 32 32 32 32 32 32 32 6

Activation s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ tanh tanh Identity

4.4 RNN

Fig. 2: RNN and CNN Policy models. The Field model produces a map of values
to use for producing µπ, σπ through interpolation. The RNN model uses the
same base as the Field model as well as information from the past trajectory to
decode a featurized context representation and previous state to next µπ, σπ.

As discussed in the paper, the R2P2 RNN architecture builds upon the Field
architecture, using the same CNN architecture settings until the last layer. Fig.
5 from the paper is reproduced here for convenience in Fig. 2. The past encoding
used is produced by a GRU RNN over the past states with 150 units. The last
layer from the CNN architecture is flattened and concatenated with the past
encoding to form the “static” contextual input, which is passed through a 2-
layer MLP with 50 hidden and 50 output units, with softplus activations. The
“dynamic” input, in the sense of its dependence on t, is formed from a fixed-
length zero-padded vector of flattened previous states x1, . . . , xt−1. This input is
passed into a GRU RNN cell to “decode” x1 . . . , xT to a 150 dimensional vector,
which is concatenated with the “static” output to form the “joint” feature, which
is passed through independent MLPs to form the µπt , σπt .

4.5 GAIL Discriminators

MLP Discriminator We use the MLP form as depicted in Table 2. This is
the original form of the GAIL Discriminator [1]. The final activation is Softmax
in the case of the original formulation, and Identity in the case of the WGAN-
variant.

6 Nicholas Rhinehart, Kris M. Kitani, Paul Vernaza

Table 2: GAIL Discriminators

MLP Discriminator CNN MLP Discriminator

Layer 1 2 3 1 2
Units 100 100 1 128 1

Activation tanh tanh Identity or softmax tanh Identity or softmax

CNN Discriminator In order to build a context-dependent discriminator (a
function of the side information, φ), we used the same CNN architecture for the
R2P2 Field model, except the output layer has 32 final channels. “State features”
ft are extracted from this output layer by the same bilinear interpolation process
as in the Field model. These features are then passed into the MLP shown in
Table 2. As before, the final activation is Softmax in the case of the original
formulation, and Identity in the case of the WGAN-variant.

4.6 CVAE

We followed the architectural description of the CVAE-variant described in [2].

4.7 DCE-G

We employ the same past-encoding technique as previously described. The past
encoding state is passed into a GRU RNN decoder that takes a one-hot vector
that indicates the t of the rollout. The decoder produces 5-dimensional vectors,
with the first two components used to parameterized µπt , and the latter three
components used to parameterize the upper triangle of σπt .

5 R2P2 GAIL derivation

Formally, the GAIL policy seeks to optimize the following expected γ-discounted
log-discriminator returns objective:

maxθEx∼qθJ(x) =

∫
dxqθJ(x) =

∫
dxqθ

T∑
t=1

γt−1 logDω(xt, at) (15)

In GAIL, qθ includes unknown model dynamics, thus ∇θqθ cannot be com-
puted. Optimization of Eq. 15 is done through the policy gradient shown in
Eq 16. R2P2 GAIL can compute ∇θqθ through its use of differentiable dynam-
ics inside qθ. The R2P2 GAIL gradient of Eq. 15 is shown in Eq. 17.

Ex∼qθ
[
J(x)∇θ log πθ(at|x)

]
(16) Ez∼q0∇θJ(gθ(z)) (17)

Therefore, we can directly optimize the objective without relying on the
indirect optimization approach of policy gradients. We provide a full derivation

R2P2 for Diverse, Precise Generative Path Forecasting 7

of R2P2 GAIL in the supplementary material. We verify in our experiments
that our approach is stabler and achieves better performance.

The GAIL training objective may be expressed as follows [3]:

min
θ

max
ω

Eπθ logDω(s, a) + EπE log(1−Dω(s, a))− λH(π), (18)

where (s, a) are understood to be drawn from the marginal state-action dis-
tributions associated with either the model policy πθ or the expert policy πE ,
as indicated by subscripts of E. The following equivalent expression makes this
more explicit:

min
θ

max
ω

[E
st∼(qπθ)t
at∼(πθ)t

t∼Unif({1,...,T})

logDω(st, at)+ E
st∼(qπE)t
at∼(πE)t

t∼Unif({1,...,T})

log(1−Dω(st, at))]−λH(πθ),

where (qπ)t denotes the marginal distribution of states at time t induced by
rolling-out policy π, (π)t denotes the expected distribution of actions at time t,
and Unif represents the uniform distribution. From the perspective of the outer
optimization (i.e., holding ω fixed), we observe that the objective function has
a form commonly treated in reinforcement learning: minθ Ex∼qπJπ(x), where
Jπ(x) is the interior expression. Using the pushforward reparameterization, the
outer optimization may be written as

min
θ

E
z∼qb

t∼Unif({1,...,T})

logD(gπθ (z)t, πθ(z)t)− λ logH(πθ(z)t), (19)

where gπθ (z)t denotes the roll-out of policy πθ with random noise sequence z,
evaluated at time t; and πθ(z)t denotes the policy evaluated with z at time t.
Here, we regard πθ(z) as a deterministic function that returns the action at given
the random noise sequence z. Using the form of gπ suggested in the paper, we
have

πθ(z)t := µθt (x1:t−1, φ) + σθt (x1:t−1)zt,

since we identify the states with the actions.
From Eq. (19), it is easy to see that the differentiability of gπθ wrt. θ triv-

ially allows us to obtain a stochastic gradient of Eq. (19) wrt. θ by moving the
derivative inside the integral.

6 Additional experiments

6.1 Time-dependent Cross-Entropy

We additionally measured the “time-dependent cross-entropy”:H(pt, qπt |x̂1:t−1 ∼
p1:t−1) = −Ex̂∼p log qπt(x̂t|x̂1:t−1) for several approaches. Due to our model’s
decomposition, each time-dependent PDF qπt(·| . . .) is simply the time-specific
contribution to the original joint distribution. These results are shown in Fig. 3.

8 Nicholas Rhinehart, Kris M. Kitani, Paul Vernaza

(a) Cross (b) CaliForecasting (c) Kitti

Fig. 3: Test H(pt, qπt) vs. t.

7 Derivation of Jacobian and its determinant

Given the recursive rollout equation (by recalling µt(ψt) = 2xt−1−xt−2+µ̂t(ψt)):

xt = 2xt−1 − xt−2 + µt(ψt) + σt(ψt)zt,

then

Jgπ (g−1π (x)) =
dgπ

dg−1π (x)
=


σπ1 (ψ1), 0 . . . 0

dx2

z1
σπ2 (ψt) . . . 0

...
. . . 0

dxT
z1

dxT
z2

. . . σπT (ψT)

 .
Therefore,

log

∣∣∣∣∣∣det

(
dgπ

dg−1π (x)

)∣∣∣∣∣∣ = log

∣∣∣∣∣∣
T∏
t=1

det(σπt (ψt))

∣∣∣∣∣∣ =

T∑
t=1

log
∣∣det(σπt (ψt))

∣∣ .

References

1. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural
Information Processing Systems. pp. 4565–4573 (2016)

2. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire:
Distant future prediction in dynamic scenes with interacting agents (2017)

3. Li, Y., Song, J., Ermon, S.: Infogail: Interpretable imitation learning from visual
demonstrations. In: Advances in Neural Information Processing Systems. pp. 3815–
3825 (2017)

