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ABSTRACT

The use of imitation learning to learn a single policy for a complex task that has
multiple modes or hierarchical structure can be challenging. In fact, previous work
has shown that when the modes are known, learning separate policies for each
mode or sub-task can greatly improve the performance of imitation learning. In
this work, we discover the interaction between sub-tasks from their resulting state-
action trajectory sequences using a directed graphical model. We propose a new
algorithm based on the generative adversarial imitation learning framework which
automatically learns sub-task policies from unsegmented demonstrations. Our
approach maximizes the directed information flow in the graphical model between
sub-task latent variables and their generated trajectories. We also show how our
approach connects with the existing Options framework, which is commonly used
to learn hierarchical policies.

1 INTRODUCTION

Complex human activities can often be broken down into various simpler sub-activities or sub-tasks
that can serve as the basic building blocks for completing a variety of complicated tasks. For
instance, when driving a car, a driver may perform several simpler sub-tasks such as driving straight
in a lane, changing lanes, executing a turn and braking, in different orders and for varying times
depending on the source, destination, traffic conditions etc. Using imitation learning to learn a
single monolithic policy to represent a structured activity can be challenging as it does not make
explicit the sub-structure between the parts within the activity. In this work, we develop an imitation
learning framework that can learn a policy for each of these sub-tasks given unsegmented activity
demonstrations and also learn a macro-policy which dictates switching from one sub-task policy to
another. Learning sub-task specific policies has the benefit of shared learning. Each such sub-task
policy also needs to specialize over a restricted state space, thus making the learning problem easier.

Previous works in imitation learning (Li et al., 2017; Hausman et al., 2017) focus on learning
each sub-task specific policy using segmented expert demonstrations by modeling the variability
in each sub-task policy using a latent variable. This latent variable is inferred by enforcing high
mutual information between the latent variable and expert demonstrations. This information theoretic
perspective is equivalent to the graphical model shown in Figure 1 (Left), where the node c represents
the latent variable. However, since learning sub-task policies requires isolated demonstrations for
each sub-task, this setup is difficult to scale to many real world scenarios where providing such
segmented trajectories is cumbersome. Further, this setup does not learn a macro-policy to combine
the learned sub-task policies in meaningful ways to achieve different tasks.

In our work, we aim to learn each sub-task policy directly from unsegmented activity demonstrations.
For example, given a task consisting of three sub-tasks — A, B and C, we wish to learn a policy to
complete sub-task A, learn when to transition from A to B, finish sub-task B and so on. To achieve
this we use a causal graphical model, which can be represented as a Dynamic Bayesian Network as
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Figure 1: Left: Graphical model used in Info-GAIL Li et al. (2017). Right: Causal model in this
work. The latent code causes the policy to produce a trajectory. The current trajectory, and latent
code produce the next latent code

shown in Figure 1 (Right). The nodes ct denote latent variables which indicate the currently active
sub-task and the nodes τt denote the state-action pair at time t. We consider as given, a set of expert
demonstrations, each of which is represented by τ = {τ1, · · · , τT } and has a corresponding sequence
of latent factors c = {c1, · · · , cT−1}. The sub-activity at time t dictates what state-action pair was
generated at time t. The previous sub-task and the current state together cause the selection of the
next sub-task.

As we will discuss in Section 3, extending the use of mutual information to learn sub-task policies
from unsegmented demonstrations is problematic, as it requires learning the macro-policy as a
conditional probability distribution which depends on the unobserved future. This unobserved future
is unknown during earlier points of interaction (Figure 1). To alleviate this, in our work we aim to
force the policy to generate trajectories that maximize the directed information or causal information
(Massey, 1990) flow from trajectories to latent factors of variation within the trajectories instead of
mutual information. Using directed information requires us to learn a causally conditioned probability
distribution (Kramer, 1998) which depends only on the observed past while allowing the unobserved
future to be sequentially revealed. Further, since there exists feedback in our causal graphical model
i.e., information flows from the latent variables to trajectories and vice versa, directed information
also provides a better upper bound on this information flow between the latent variables and expert
trajectories than does the conventional mutual information (Massey, 1990; Kramer, 1998).

We also draw connections with existing work on learning sub-task policies using imitation learning
with the options framework (Sutton et al., 1998; Daniel et al., 2016). We show that our work, while
derived using the information theoretic perspective of maximizing directed information, bears a close
resemblance to applying the options framework in a generative adversarial imitation setting. Thus,
our approach combines the benefits of learning hierarchical policies using the options framework
with the robustness of generative adversarial imitation learning, helping overcome problems such as
compounding errors that plague behaviour cloning.

In summary, the main contributions of our work include:

• We extend existing generative adversarial imitation learning frameworks to allow for learning
of sub-task specific policies by maximizing directed information in a causal graph of sub-
activity latent variables and observed trajectory variables.
• We draw connections between previous works on imitation learning with sub-task policies

using options and show that our proposed approach can also be seen as option learning in a
generative adversarial setting.
• We show through experiments on both discrete and continuous state-action spaces, the

ability of our approach to segment expert demonstrations into meaningful sub-tasks and
combine sub-task specific policies to perform the desired task.

2 RELATED WORK

2.1 IMITATION LEARNING

Imitation Learning (Pomerleau, 1989) aims at learning policies that can mimic expert behaviours from
demonstrations. Modeling the problem as a Markov Decision Process (MDP), the goal in imitation
learning is to learn a policy π(a|s), which defines the conditional distribution over actions a ∈ A given
the state s ∈ S, from state-action trajectories τ = (s0, a0, · · · , sT ) of expert behaviour. Recently,
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Ho & Ermon (2016) introduced an imitation learning framework called Generative Adversarial
Imitation Learning (GAIL) that is able to learn policies for complex high-dimensional physics-based
control tasks. They reduce the imitation learning problem into an adversarial learning framework, for
which they utilize Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). The generator
network of the GAN represents the agent’s policy π while the discriminator network serves as a local
reward function and learns to differentiate between state-action pairs from the expert policy πE and
from the agent’s policy π. Mathematically, it is equivalent to optimizing the following,

min
π

max
D

Eπ[logD(s, a)] + EπE
[1− logD(s, a)]− λH(π)

InfoGAIL (Li et al., 2017) and Hausman et al. (2017) solve the problem of learning from policies
generated by a mixture of experts. They introduce a latent variable c into the policy function π(a|s, c)
to separate different type of behaviours present in the demonstration. To incentivize the network to
use the latent variable, they utilize an information-theoretic regularization enforcing that there should
be high mutual information between c and the state-action pairs in the generated trajectory, a concept
that was first introduced in InfoGAN (Chen et al., 2016). They introduce a variational lower bound
L1(π,Q) of the mutual information I(c; τ) to the loss function in GAIL.

L1(π,Q) = Ec∼p(c),a∼π(·|s,c) logQ(c|τ) +H(c) ≤ I(c; τ)

The modified objective can then be given as,

min
π,q

max
D

Eπ[logD(s, a)] + EπE
[1− logD(s, a)]− λ1L1(π, q)− λ2H(π)

InfoGAIL models variations between different trajectories as the latent codes correspond to trajecto-
ries coming from different demonstrators. In contrast, we aim to model intra-trajectory variations and
latent codes in our work correspond to sub-tasks (variations) within a demonstration. In Section 3, we
discuss why using a mutual information based loss is infeasible in our problem setting and describe
our proposed approach.

2.2 OPTIONS

Consider an MDP with states s ∈ S and actions a ∈ A. Under the options framework (Sutton et al.,
1998), an option, indexed by o ∈ O consists of a sub-policy π(a|s, o), a termination policy π(b|s, ō)
and an option activation policy π(o|s). After an option is initiated, actions are generated by the
sub-policy until the option is terminated and a new option is selected.

Options framework has been studied widely in RL literature. A challenging problem related to the
options framework is to automatically infer options without supervision. Option discovery approaches
often aim to find bottleneck states, i.e., states that the agent has to pass through to reach the goal.
Many different approaches such as multiple-instance learning (McGovern & Barto, 2001), graph
based algorithms (Menache et al., 2002; Şimşek et al., 2005) have been used to find such bottleneck
states. Once the bottleneck states are discovered, the above approaches find options policies to reach
each such state. In contrast, we propose a unified framework using a information-theoretic approach
to automatically discover relevant option policies without the need to discover bottleneck states.

Daniel et al. (2016) formulate the options framework as a probabilistic graphical model where options
are treated as latent variables which are then learned from expert data. The option policies (π(a|s, o))
are analogous to sub-task policies in our work. These option policies are then learned by maximizing
a lower bound using the Expectation-Maximization algorithm (Moon, 1996). We show how this lower
bound is closely related to the objective derived in our work. We further show how this connection
allows our method to be seen as a generative adversarial variant of their approach. Fox et al. (2017)
propose to extend the EM based approach to multiple levels of option hierarchies. Further work on
discovery of deep continuous options (Krishnan et al., 2017) allows the option policy to also select a
continuous action in states where none of the options are applicable. Our proposed approach can also
be extended to multi-level hierarchies (e.g. by learning VAEs introduced in section 3 with multiple
sampling layers) or hybrid categorical-continuous macro-policies (e.g. using both categorical and
continuous hidden units in the sampling layer in VAE).
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Shiarlis et al. (2018) learn options by assuming knowledge of task sketches (Andreas et al., 2017)
along with the demonstrations. The work proposes a behavior cloning based approach using connec-
tionist temporal classification (Graves et al., 2006) to simultaneously maximize the joint likelihood
of the sketch sequences and the sub-policies. Our proposed approach does not expect task sketches
as input, making it more amenable to problems where labeling demonstrations with sketch labels is
difficult.

Prior work in robot learning has also looked at learning motion primitives from unsegmented
demonstrations. These primitives usually correspond to a particular skill and are analogous to options.
Niekum & Barto (2011) used the Beta-Process Autoregressive Hidden Markov Model (BP-AR-HMM)
to segment expert demonstrations and post-process these segments to learn motion primitives which
provide the ability to use reinforcement learning for policy improvement. Alternately, Krishnan
et al. (2018) use Dirichlet Process Gaussian Mixture Model (DP-GMM) to segment the expert
demonstrations by finding transition states between linear dynamical segments. Similarly, Ranchod
et al. (2015) use the BP-AR-HMM framework to initially segment the expert demonstrations and
then use an inverse reinforcement learning step to infer the reward function for each segment. The
use of appropriate priors allows these methods to discover options without a priori knowledge of the
total number of skills. Kroemer et al. (2014) model the task of manipulation as an autoregressive
Hidden Markov Model where the hidden phases of manipulation are learned from data using EM.
However, unlike the above methods, in our proposed approach we also learn an appropriate policy
over the extracted options. We show how this allows us to compose the individual option policies to
induce novel behaviours which were not present in the expert demonstrations.

3 PROPOSED APPROACH

As mentioned in the previous section, while prior approaches can learn to disambiguate the multiple
modalities in the demonstration of a sub-task and learn to imitate them, they cannot learn to imitate
demonstrations of unsegmented long tasks that are formed by a combination of many small sub-tasks.
To learn such sub-task policies from unsegmented deomonstrations we use the graphical model
in Figure 1 (Right), i.e., consider a set of expert demonstrations, each of which is represented by
τ = {τ1, · · · , τT } where τt is the state-action pair observed at time t. Each such demonstration has
a corresponding sequence of latent variables c = {c1, · · · , cT−1} which denote the sub-activity in
the demonstration at any given time step.

As noted before, previous approaches (Li et al., 2017; Hausman et al., 2017) model the expert
sub-task demonstrations using only a single latent variable. To enforce the model to use this latent
variable, these approaches propose to maximize the mutual information between the demonstrated
sequence of state-action pairs and the latent embedding of the nature of the sub-activity. This is
achieved by adding a lower bound to the mutual information between the latent variables and expert
demonstrations. This variational lower bound of the mutual information is then combined with the
the adversarial loss for imitation learning proposed in Ho & Ermon (2016). Extending this to our
setting, where we have a sequence of latent variables c, yields the following lower bound on the
mutual information,

L(π, q) =
∑
t

Ec1:t∼p(c1:t),at−1∼π(·|st−1,c1:t−1)

[
log q(ct|c1:t−1, τ )

]
+H(c) ≤ I(τ ; c) (1)

Observe that the dependence of q on the entire trajectory τ precludes the use of such a distribution
at test time, where only the trajectory up to the current time is known. To overcome this limitation,
in this work we propose to force the policy to generate trajectories that maximize the directed or
causal information flow from trajectories to the sequence of latent sub-activity variables instead. As
we show below, by using directed information instead of mutual information, we can replace the
dependence on τ with a dependence on the trajectory generated up to current time t.

The directed information flow from a sequenceX to Y is given by,

I(X → Y ) = H(Y )−H(Y ‖X)

where H(Y ‖X) is the causally-conditioned entropy. ReplacingX and Y with sequences τ and c,
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I(τ → c) = H(c)−H(c‖τ )

= H(c)−
∑
t

H(ct|c1:t−1, τ1:t)

= H(c) +
∑
t

∑
c1:t−1,τ1:t

[
p(c1:t−1, τ1:t)

∑
ct

p(ct|c1:t−1, τ1:t) log p(ct|c1:t−1, τ1:t)
]

(2)

Here τ1:t = (s1, · · · , at−1, st). A variational lower bound, L1(π, q) of the directed information,
I(τ → c) which uses an approximate posterior q(ct|c1:t−1, τ1:t) instead of the true posterior
p(ct|c1:t−1, τ1:t) can then be derived to get (See Appendix A.1 for the complete derivation),

L1(π, q) =
∑
t

Ec1:t∼p(c1:t),at−1∼π(·|st−1,c1:t−1)

[
log q(ct|c1:t−1, τ1:t)

]
+H(c) ≤ I(τ → c) (3)

Thus, by maximizing directed information instead of mutual information, we can learn a posterior
distribution over the next latent factor c given the latent factors discovered up to now and the trajectory
followed up to now, thereby removing the dependence on the future trajectory. In practice, we do not
consider the H(c) term. This gives us the following objective,

min
π,q

max
D

Eπ [logD(s, a)] + EπE
[1− logD(s, a)]− λ1L1(π, q)− λ2H(π) (4)

We call this approach Directed-Info GAIL. Notice that, to compute the loss in equation 3, we need to
sample from the prior distribution p(c1:t). In order to estimate this distribution, we first pre-train a
variational auto-encoder (VAE) (Kingma & Welling, 2013) on the expert trajectories, the details of
which are described in the next sub-section.

3.1 VAE PRE-TRAINING

Figure 2 (left) shows the design of the VAE pictorially. The VAE consists of two multi-layer
perceptrons that serve as the encoder and the decoder. The encoder uses the current state st and the
previous latent variable ct−1 to produce the current latent variable ct. We used the Gumbel-softmax
trick (Jang et al., 2016) to obtain samples of latent variables from a categorical distribution. The
decoder then takes st and ct as input and outputs the action at. We use the following objective, which
maximizes the lower bound of the probability of the trajectories p(τ ), to train our VAE,

LVAE(π, q; τi) = −
∑
t

Ect∼q
[

log π(at|st, c1:t)
]

+
∑
t

DKL(q(ct|c1:t−1, τ1:t)‖p(ct|c1:t−1)) (5)

Figure 2 (right) gives an overview of the complete method. The VAE pre-training step allows us to
get approximate samples from the distribution p(c1:t) to optimize equation 4. This is done by using q
to obtain samples of latent variable sequence c by using its output on the expert demonstrations. In
practice, we fix the weights of the network q to those obtained from the VAE pre-training step when
optimizing the Directed-Info GAIL loss in equation 4.

3.2 CONNECTION WITH OPTIONS FRAMEWORK

In Daniel et al. (2016) the authors provide a probabilistic perspective of the options framework.
Although, Daniel et al. (2016) consider separate termination and option latent variables (bt and
ot), for the purpose of comparison, we collapse them into a single latent variable ct, similar to our
framework with a distribution p(ct|st, ct−1). The lower-bound derived in Daniel et al. (2016) which
is maximized using Expectation-Maximization (EM) algorithm can then be written as (suppressing
dependence on parameters),
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c0 c1 c2 cT-1

s0 c0 s1 c1 s2 c2 sT-1 cT-1

MLP MLP MLP MLP

a0 a1 a2 aT-1

VAE pre-training
(Learn πVAE and q VAE)

Directed-Info GAIL
(q DI-GAIL = q VAE . Learn π DI-GAIL)

q VAE

Figure 2: Left: VAE pre-training step. The VAE encoder uses the current state (st), and previous
latent variable (ct−1) to produce the current latent variable (ct). The decoder reconstructs the action
(at) using st and ct. Right: An overview of the proposed approach. We use the VAE pre-training
step to learn an approximate prior over the latent variables and use this to learn sub-task policies in
the proposed Directed-Info GAIL step.

(a) (b) (c) (d)
Figure 3: Results on the Four Rooms environment. (a) and (b) show results for two different latent
variables. The arrows in each cell indicate the direction (action) with highest probability in that
state and using the given latent variable. (c) and (d) show expert and generated trajectories in this
environment. Star (*) represents the start state. The expert trajectory is shown in red. The color of
the generated trajectory represents the latent code used by the policy at each time step.

p(τ) ≥
∑
t

∑
ct−1:t

p(ct−1:t|τ) log p(ct|st, ct−1)) +
∑
t

∑
ct

p(ct|τ) log π(at|st, ct) (6)

Note that the first term in equation 6 i.e., the expectation over the distribution log p(ct|st, ct−1) is the
same as equation 3 of our proposed approach with a one-step Markov assumption and a conditional
expectation with given expert trajectories instead of an expectation with generated trajectories. The
second term in equation 6 i.e., the expectation over log π(at|st, ct) is replaced by the GAIL loss
in equation 4. Our proposed Directed-Info GAIL can be therefore be considered as the generative
adversarial variant of imitation learning using the options framework. The VAE behaviour cloning pre-
training step in equation 5 is exactly equivalent to equation 6, where we use approximate variational
inference using VAEs instead of EM. Thus, our approach combines the benefits of both behavior
cloning and generative adversarial imitation learning. Using GAIL enables learning of robust policies
that do not suffer from the problem of compounding errors. At the same time, conditioning GAIL on
latent codes learned from the behavior cloning step prevents the issue of mode collapse in GANs.

4 EXPERIMENTS

We present results on both discrete and continuous state-action environments. In both of these settings
we show that (1) our method is able to segment out sub-tasks from given expert trajectories, (2) learn
sub-task conditioned policies, and (3) learn to combine these sub-task policies in order to achieve the
task objective.
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Environment GAIL (Ho & Ermon, 2016) VAE Directed-Info GAIL

Pendulum-v0 −121.42± 94.13 −142.89± 95.57 −125.39± 103.75
InvertedPendulum-v2 1000.0± 15.23 218.8± 7.95 1000.0± 14.97
Hopper-v2 3623.4± 51.0 499.1± 86.2 3662.1± 21.7
Walker2d-v2 4858.0± 301.7 1549.5± 793.7 5083.9± 356.3

Table 1: A comparison of returns for continuous environments. The returns were computed using
300 episodes. Our approach gives comparable returns to using GAIL but also segments expert
demonstrations into sub-tasks. The proposed Directed-Info GAIL approach improves over the policy
learned from the VAE pre-training step.

4.1 DISCRETE ENVIRONMENT

For the discrete setting, we choose a grid world environment which consists of a 15× 11 grid with
four rooms connected via corridors as shown in Figure 3. The agent spawns at a random location in
the grid and its goal is to reach an apple, which spawns in one of the four rooms randomly, using the
shortest possible path. Through this experiment we aim to see whether our proposed approach is able
to infer sub-tasks which correspond to meaningful navigation strategies and combine them to plan
paths to different goal states.

Figure 3 shows sub-task policies learned by our approach in this task. The two plots on the left
correspond to two of the four different values of the latent variable. The arrow at every state in
the grid shows the agent action (direction) with the highest probability in that state for that latent
variable. In the discussion that follows, we label the rooms from 1 to 4 starting from the room at
the top left and moving in the clockwise direction. We observe that the sub-tasks extracted by our
approach represent semantically meaningful navigation plans. Also, each latent variable is utilized
for a different sub-task. For instance, the agent uses the latent code in Figure 3(a), to perform the
sub-task of moving from room 1 to room 3 and from room 2 to room 4 and the code in Figure 3(b) to
move in the opposite direction. Further, our approach learns to successfully combine these navigation
strategies to achieve the given objectives. For example, Figure 3(c, d) show examples of how the
macro-policy switches between various latent codes to achieve the desired goals of reaching the
apples in rooms 1 and 2 respectively.

4.2 CONTINUOUS ENVIRONMENTS

To validate our proposed approach on continuous control tasks we experiment with 5 continuous
state-action environments. The first environment involves learning to draw circles on a 2D plane and
is called Circle-World. In this experiment, the agent must learn to draw a circle in both clockwise
and counter-clockwise direction. The agent always starts at (0,0), completes a circle in clockwise
direction and then retraces its path in the counter-clockwise direction. The trajectories differ in the
radii of the circles. The state s ∈ R2 is the (x,y) co-ordinate and the actions a ∈ R2 is a unit vector
representing the direction of motion. Notice that in Circle-World, the expert trajectories include two
different actions (for clockwise and anti-clockwise direction) for every state (x, y) in the trajectory,
thus making the problem multi-modal in nature. This requires the agent to appropriately disambiguate
between the two different phases of the trajectory.

Further, to show the scalability of our approach to higher dimensional continuous control tasks we
also show experiments on Pendulum, Inverted Pendulum, Hopper and Walker environments, provided
in OpenAI Gym (Brockman et al., 2016). Each task is progressively more challenging, with a larger
state and action space. Our aim with these experiments is to see whether our approach can identify
certain action primitives which helps the agent to complete the given task successfully. To verify the
effectiveness of our proposed approach we do a comparative analysis of our results with both GAIL
(Ho & Ermon, 2016) and the supervised behavior cloning approaching using a VAE. To generate
expert trajectories we train an agent using Proximal Policy Optimization (Schulman et al., 2017). We
used 25 expert trajectories for the Pendulum and Inverted Pendulum tasks and 50 expert trajectories
for experiments with the Hopper and Walker environments.

Figures 4(a, b, c) show results on the Circle-World environment. As can be seen in Figure 4(a, b),
when using two sub-task latent variables, our method learns to segment the demonstrations into
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Figure 4: Results for Directed-Info GAIL on continuous environments. (a) Our method learns to break
down the Circle-World task into two different sub-activities, shown in green and blue. (b) Trajectory
generated using our approach. Color denotes time step. (c) Trajectory generated in opposite direction.
Color denotes time step. (d) Sub-activity latent variables as inferred by Directed-Info GAIL on
Pendulum-v0. Different colors represent different context.

Hopper-v2 Walker2d-v2

(a)

Peak Ascend Land

Pink leg Brown legIn air

(b)

Figure 5: (a) shows the plot of the sub-task latent variable vs time on the Hopper and Walker tasks.
(b) shows discovered sub-tasks using Directed-Info GAIL on these environments.

two intuitive sub-tasks of drawing circles in clockwise and counterclockwise directions. Hence, our
method is able to identify the underlying modes and thus find meaningful sub-task segmentations
from unsegmented data. We also illustrate how the learned sub-task policies can be composed to
perform new types of behavior that were unobserved in the expert data. In Figure 4(c) we show how
the sub-task policies can be combined to draw the circles in inverted order of direction by swapping
the learned macro-policy with a different desired policy. Thus, the sub-task policies can be utilized as
a library of primitive actions which is a significant benefit over methods learning monolithic policies.

We now discuss the results on the classical Pendulum environment. Figure 4(d) shows the sub-task
latent variables assigned by our approach to the various states. As can be seen in the figure, the
network is able to associate different latent variables to different sub-tasks. For instance, states that
have a high velocity are assigned a particular latent variable (shown in blue). Similarly, states that lie
close to position 0 and have low velocity (i.e. the desired target position) get assigned another latent
variable (shown in green). The remaining states get classified as a separate sub-task.

Figure 5 shows the results on the higher dimensional continuous control, Hopper and Walker,
environments. Figure 5(a) shows a plots for sub-task latent variable assignment obtained on these
environments. Our proposed method identifies basic action primitives which are then chained together
to effectively perform the two locomotion tasks. Figure 5(b) shows that our approach learns to assign
separate latent variable values for different action primitives such as, jumping, mid-air and landing
phases of these tasks, with the latent variable changing approximately periodically as the agent
performs the periodic hopping/walking motion.

Finally, in Table 1 we also show the quantitative evaluation on the above continuous control envi-
ronments. We report the mean and standard deviations of the returns over 300 episodes. As can
be seen, our approach improves the performance over the VAE pre-training step, overcoming the
issue of compounding errors. The performance of our approach is comparable to the state-of-the-art
GAIL (Ho & Ermon, 2016). Our method moreover, has the added advantage of segmenting the
demonstrations into sub-tasks and also providing composable sub-task policies.
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Context: 0
Pick

Context: 1
Place

Figure 6: Segmentations obtained using
our proposed Directed-Info GAIL method on
FetchPickandPlace-v1.

Method Returns

VAE −14.07± 5.57
GAIL −13.29± 5.84
Directed-Info GAIL −11.74± 5.87

GAIL + L2 loss −12.05± 4.94
Directed-Info GAIL + L2 loss −9.47± 4.84

Table 2: Mean returns over 100 episodes on
FetchPickandPlace-v1 environment, calculated us-
ing the ‘dense’ reward setting.

We further analyze our proposed approach in more detail in the Appendix. In Appendix A.4 we
visualize the sub-tasks in a low-dimensional sub-space. Also, in Appendix A.5 we show results when
using a larger dimensional sub-task latent variable. A video of our results on Hopper and Walker
environments can be seen at https://sites.google.com/view/directedinfo-gail.

4.3 OPENAI ROBOTICS ENVIRONMENT

We further performed experiments on the FetchPickandPlace-v1 task in OpenAI Gym. In each
episode of this task, the object and goal locations are selected randomly. The robot then must first
reach and pick the object, and then move it to the goal location.

We trained agents using both our proposed Directed-Info GAIL and the baseline GAIL approaches.
We used 500 expert demonstrations. While our method was able to learn to segment the ex-
pert demonstrations into the Pick and Place sub-tasks correctly, as can be seen in Figure 6 and
the videos at https://sites.google.com/view/directedinfo-gail/home#h.p_
4dsbuC5expkZ, neither our approach, nor GAIL was able to successfully complete the task. In
our preliminary results, we found that the robot, in both our proposed approach and GAIL, would
reach the object but fail to grasp it despite repeated attempts. To the best of our knowledge, no other
work has successfully trained GAIL on this task either. Our preliminary experiments suggested that
stronger supervision may be necessary to teach the agent the subtle action of grasping.

In order to provide this supervision, we additionally trained the policy to minimize the L2 distance
between the policy action and the expert action on states in the expert demonstrations. At every
training step, we compute the discriminator and policy (generator) gradient using the Directed-Info
GAIL (or in the baseline, GAIL) loss using states and actions generated by the policy. Along with
this gradient, we also sample a batch of states from the expert demonstrations and compute the policy
gradient that minimizes the L2 loss between actions that the policy takes at these states and the
actions taken by the expert. We weigh these two gradients to train the policy.

Table 2 shows the returns computed over 100 episodes. Adding the L2 measure as an additional loss
led to significant improvement. Our proposed approach Directed-Info GAIL + L2 loss outperforms
the baselines. Moreover, we believe that this quantitative improvement does not reflect the true
performance gain obtained using our method. The reward function is such that a correct grasp but
incorrect movement (e.g. motion in the opposite direction or dropping of the object) is penalized
more than a failed grasp. Thus, the reward function does not capture the extent to which the task was
completed.

Qualitatively, we observed a much more significant difference in performance between the
proposed approach and the baseline. This can be seen in the sample videos of the success
and failure cases for our and the baseline method at https://sites.google.com/view/
directedinfo-gail/home#h.p_qM39qD8xQhJQ. Our proposed method succeeds much
more often than the baseline method. The most common failure cases for our method include the
agent picking up the object, but not reaching the goal state before the end of the episode, moving
the object to an incorrect location or dropping the object while moving it to the goal. Agents trained
using GAIL + L2 loss on the other hand often fail to grasp the object, either not closing the gripper or
closing the gripper prematurely. We believe that our approach helps the agent alleviate this issue by
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providing it with the sub-task code, helping it disambiguate between the very similar states the agent
observes just before and just after grasping.

5 CONCLUSION

Learning separate sub-task policies can help improve the performance of imitation learning when the
demonstrated task is complex and has a hierarchical structure. In this work, we present an algorithm
that infers these latent sub-task policies directly from given unstructured and unlabelled expert
demonstrations. We model the problem of imitation learning as a directed graph with sub-task latent
variables and observed trajectory variables. We use the notion of directed information in a generative
adversarial imitation learning framework to learn sub-task and macro policies. We further show
theoretical connections with the options literature as used in hierarchical reinforcement and imitation
learning. We evaluate our method on both discrete and continuous environments. Our experiments
show that our method is able to segment the expert demonstrations into different sub-tasks, learn
sub-task specific policies and also learn a macro-policy that can combines these sub-task.
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A APPENDIX

A.1 DERIVATION FOR DIRECTED-INFO LOSS

The directed information flow from a sequenceX to Y is given by:

I(X → Y ) = H(Y )−H(Y ‖X)

where H(Y ‖X) is the causally-conditioned entropy. ReplacingX and Y with the sequences τ and
c give,

I(τ → c) = H(c)−H(c‖τ )

= H(c)−
∑
t

H(ct|c1:t−1, τ1:t)

= H(c) +
∑
t

∑
c1:t−1,τ1:t

[
p(c1:t−1, τ1:t)

∑
ct

p(ct|c1:t−1, τ1:t) log p(ct|c1:t−1, τ1:t)
]

= H(c) +
∑
t

∑
c1:t−1,τ1:t

[
p(c1:t−1, τ1:t)[DKL(p(·|c1:t−1, τ1:t)‖q(·|c1:t−1, τ1:t))

+
∑
ct

p(ct|c1:t−1, τ1:t) log q(ct|c1:t−1, τ1:t)]
]

≥ H(c) +
∑
t

∑
c1:t−1,τ1:t

[
p(c1:t−1, τ1:t)

∑
ct

p(ct|c1:t−1, τ1:t) log q(ct|c1:t−1, τ1:t)
]
.

(7)

Here τ1:t = (s1, · · · , at−1, st). The lower bound in equation 7 requires us to know the true posterior
distribution to compute the expectation. To avoid sampling from p(ct|c1:t−1, τ1:t), we use the
following,

∑
c1:t−1

∑
τ1:t

[
p(c1:t−1, τ1:t)

∑
ct

p(ct|c1:t−1, τ1:t) log q(ct|c1:t−1, τ1:t)
]

=
∑
c1:t−1

∑
τ1:t

∑
ct

[
p(c1:t−1, τ1:t)p(ct|c1:t−1, τ1:t) log q(ct|c1:t−1, τ1:t)

]
=
∑
c1:t−1

∑
τ1:t

∑
ct

[
p(ct, c1:t−1, τ1:t) log q(ct|c1:t−1, τ1:t)]

=
∑
c1:t−1

∑
τ1:t

∑
ct

[
p(τ1:t|ct, c1:t−1)p(ct, c1:t−1) log q(ct|c1:t−1, τ1:t)

]
=
∑
c1:t

p(c1:t)
∑
τ1:t

[
p(τ1:t|ct, c1:t−1) log q(ct|c1:t−1, τ1:t)

]
=
∑
c1:t

p(c1:t)
∑
τ1:t

[
p(τ1:t|c1:t−1) log q(ct|c1:t−1, τ1:t)

]
(8)

where the last step follows from the causal restriction that future provided variables (ct) do not
influence earlier predicted variables (τ1:t consists of states up to time t. ct does not effect state st).
Putting the result in equation 8 in equation 7 gives,

L1(π, q) =
∑
t

Ec1:t∼p(c1:t),at−1∼π(·|st−1,c1:t−1)

[
log q(ct|c1:t−1, τ1:t)

]
+H(c) ≤ I(τ → c) (9)
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Directed Info-GAIL VAE pre-training

Environment Epochs Batch Size posterior λ Epochs Batch Size

Discrete 1000 256 0.1 500 32
Circle-World 1000 512 0.01 1000 16

Pendulum (both) 2000 1024 0.01 1000 16
Hopper-v2 5000 4096 0.01 2000 32

Walker2d-v2 5000 8192 0.001 2000 32

Table 3: Experiment settings for all the different environments for both DirectedInfo-GAIL and
VAE-pretraining step respectively.

(a) (b)

Figure 7: Latent variable assignment on the expert trajectories in Circle-World (a) with and (b)
without smoothing penalty Ls. Blue and green colors represent the two different values of the context
variable. The centres of the two circles are shifted for clarity.

Thus, by maximizing directed information instead of mutual information, we can learn a posterior
distribution over the next latent factor c given the latent factors discovered up to now and the trajectory
followed up to now, thereby removing the dependence on the future trajectory. In practice, we do not
consider the H(c) term. This gives us the objective,

min
π,q

max
D

Eπ[logD(s, a)] + EπE
[1− logD(s, a)]− λ1L1(π, q)− λ2H(π).

In practice, we fix q from the VAE pre-training and only minimize over the policy π in equation 4.

A.2 IMPLEMENTATION DETAILS

Table 3 lists the experiment settings for all of the different environments. We use multi-layer percep-
trons for our policy (generator), value, reward (discriminator) and posterior function representations.
Each network consisted of 2 hidden layers with 64 units in each layer and ReLU as our non-linearity
function. We used Adam (Kingma & Ba, 2014) as our optimizer setting an initial learning rate of
3e−4. Further, we used the Proximal Policy Optimization algorithm (Schulman et al., 2017) to train
our policy network with ε = 0.2. For the VAE pre-training step we set the VAE learning rate also to
3e−4. For the Gumbel-Softmax distribution we set an initial temperature τ = 5.0. The temperature
is annealed using using an exponential decay with the following schedule τ = max(0.1, exp−kt),
where k = 3e− 3 and t is the current epoch.

A.3 CIRCLE-WORLD SMOOTHING

In the Circle-World experiment, we added another loss term Ls to VAE pre-training loss LV AE ,
which penalizes the number of times the latent variable switches from one value to another.

Ls =
∑
t

[
1− ct−1 · ct

max(||ct−1||2, ||ct||2)

]

13



Published as a conference paper at ICLR 2019

(a) Hopper (b) Walker: View 1 (c) Walker: View 2

Figure 8: PCA Visualization for Hopper and Walker environment with sub-task latent variable of
size 4.
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Figure 9: Results on Hopper environment with sub-task latent variable of size 8.

Figure 7 shows the segmentation of expert trajectories with and without the Ls term. We observed
that without adding the smoothing penalty, the VAE learns to segment the expert trajectories into
semi-circles as shown in Figure 7(a). While a valid solution, this does not match with the intuitive
segmentation of the task into two sub-tasks of drawing circles in clockwise and counter-clockwise
directions. The smoothing term can be thought of as a prior, forcing the network to change the latent
variable as few times as possible. This helps reach a solution where the network switches between
latent variables only when required. Figure 7(b) shows an example of segmentation obtained on
expert trajectories after smoothing. Thus, adding more terms to the VAE pre-training loss can be
a good way to introduce priors and bias solutions towards those that match with human notion of
sub-tasks.

A.4 PCA VISUALIZATION OF SUB-TASKS

In Figure 8, we show the plots expert states, reduced in dimensionality using Principal Component
Analysis (PCA), in Hopper and Walker environments. States are color coded by the latent code
assigned at these states. We reduced the dimension of states in Hopper from 11 to 2 and in Walker
from 17 to 3. These low dimensional representations are able to cover ∼ 90% of variance in the
states. As can be seen in the figure, states in different parts of the space get assigned different latent
variables. This further shows that our proposed approach is able to segment trajectories in such a way
so that states that are similar to each other get assigned to the same segment (latent variable).

A.5 USING LARGER CONTEXT

For the following discussion we will represent a k-dimensional categorical variable as belonging to
∆k−1 simplex. To observe how the dimensionality of the sub-task latent variable affects our proposed
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approach we show results with larger dimensionality for the categorical latent variable ct. Since
DirectedInfo-GAIL infers the sub-tasks in an unsupervised manner, we expect our approach to output
meaningful sub-tasks irrespective of the dimensionality of ct. Figure 9 shows results for using a
higher dimensional sub-task latent variable. Precisely, we assume ct to be a 8-dimensional one hot
vector, i.e., ct ∈ ∆7.

As seen in the above figure, even with a larger context our approach identifies similar basic action
primitives as done previously when ct ∈ ∆3. This shows that despite larger dimensionality our
approach is able to reuse appropriate context inferred previously. We also visualize the context values
for the low-dimensional state-space embedding obtained by PCA. Although not perfectly identical,
these context values are similar to the visualizations observed previously for ct ∈ ∆3. Thus our
proposed approach is able, to some extent, infer appropriate sub-task representations independent of
the dimensionality of the context variable.
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